Exercices

MATHÉMATIQUES POUR LA PHYSIQUE

Exercice MATH 1 - 1

- 1. On évalue la longueur d'une table avec un mètre pliant à 150,3 cm et sa largeur par visée laser à 42,483 cm. Calculer son périmètre et sa surface.
- 2. On donne les masses molaires atomiques de l'hydrogène $M_{\rm H}=1,007976~\rm g.mol^{-1}$ et de l'oxygène $M_{\rm O}=15,9993~\rm g.mol^{-1}$. On considère une solution aqueuse de volume $V=5,0~\rm L$ et de masse volumique $\rho=1,003.10^3~\rm kg.m^{-3}$. Calculer la concentration en molécules d'eau de cette solution.

Exercice MATH 1 - 2

La vergence *V* dune lentille mince est donnée par la relation algébrique suivante :

$$V = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

où n est l'indice de réfraction du verre constituant la lentille et R_1 et R_2 , les rayons de courbure algébriques $(R_x = \overline{S_x C_x})$ respectivement des faces avant et arrière de la lentille.

L'indice n varie avec la longueur d'onde λ suivant la loi empirique de CAUCHY :

$$n = A + \frac{B}{\lambda^2}$$

A et B étant deux constantes positives.

Pour un verre de type crown : A = 1,515 et $B = 3,5.10^3$ nm².

On définit la constringence v et le pouvoir dispersif K d'un verre par :

$$v = \frac{1}{K} = \frac{n_D - 1}{n_F - n_C}$$

où n_F , n_D et n_C sont les indices du verre pour les radiations F (bleu : $\lambda_F = 486$ nm), D (jaune : $\lambda_D = 589$ nm) et C (rouge : $\lambda_C = 656$ nm).

On notera f'_F , f'_D et f'_C les distances focales images et F'_F , F'_D et F'_C les foyers images de la lentille pour les radiations F, D et C respectivement.

Une lentille mince (L), en verre crown, est biconvexe avec les rayons de courbure R_1 et R_2 tels que $|R_1| = 90$ cm et $|R_2| = 150$ cm. Le diamètre de (L) est : $\mathcal{D} = 8$ cm.

- 1. Calculer, avec le nombre de chiffres significatifs correct, les indices n_F , n_D et n_C . En déduire la constringence v et le pouvoir dispersif K pour ce verre crown.
- 2. Déterminer les distances focales f'_F , f'_D et f'_C de (L).

Exercice MATH 1 - 3

- 1. La vitesse atteinte par une particule de masse m lachée sans vitesse initiale d'une hauteur h vaut : $v = \sqrt{2gh}$. Vérifier l'homogénéité de ce résultat.
- 2. La pulsation cyclotron d'une particule chargée q de masse m placée dans un champ magnétique B vaut : $\Omega = \frac{|q|B}{m}$. Vérifier l'homogénéité de cette relation.

Exercice MATH 1 - 4

- 1. Indiquer l'expression de la force gravitationnelle entre deux masses m et M distantes de r. En déduire la dimension physique de la constante de gravitation universelle G en fonction des seules unités de base du système S.I.
- 2. En 1900, PLANCK propose une théorie du rayonnement dans laquelle les échanges d'énergie entre la lumière de fréquence v et la matière prennent des valeurs multiples de la quantité :E = hv. Cette expression correspond à l'énergie associée à une particule de lumière ou photon. h est une nouvelle constante fondamentale appelée constante de PLANCK. Indiquer l'unité SI de h et donner son équation aux dimensions (unité MLTI).

3. Dans sa théorie de la relativité, EINSTEIN montre que la célérité de la lumière c est également une grandeur fondamentale de la physique. En utilisant l'analyse dimensionnelle, montrer qu'à partir des grandeurs c, h et G, on peut définir un temps caractéristique, τ , appelé temps de PLANCK. Calculer sa valeur.

On donne: $c = 3.10^8 \text{ m.s}^{-1}$; $h = 6,62.10^{-34} \text{ J.s}$; $G = 6,67.10^{-11} \text{ S.I.}$

Exercice MATH 1 - 5

Un corps pur en équilibre sous deux phases 1 et 2, à la température T, est soumis à une pression P_{eq} qui dépend de T. La pente $\frac{dP_{eq}}{dT}$ de la courbe donnant P_{eq} en fonction de T est liée à la température T, à la chaleur latente massique de changement d'état $1 \rightarrow 2$ noté $L_{1\rightarrow 2}$ et à la différence des volumes massiques du corps pur $\Delta v = v_2 - v_1$. Cette relation s'écrit : $\frac{dP_{eq}}{dT} = T^{\alpha}L_{1\rightarrow 2}^{\beta}\Delta v^{\gamma}$. Par l'analyse dimentionnelle, déterminer les exposants α , β et γ . La relation ainsi obtenue est dite relation de CLAPEYRON.

Exercice MATH 1 - 6

La mesure à l'oscilloscope de la période d'un signal conduit à $T=10,0\pm0,2$ ms. Que vaut la fréquence? Donner sa valeur en faisant figurer l'incertitude.

Exercice MATH 2 - 1

1. On réalise le dosage d'une solution de base forte de concentration inconnue c_b et de volume $V_b = 10,0 \pm 0,1$ mL. L'acide fort utilisé a pour concentration $c_a = (1,0 \pm 0.2).10^{-2} \text{mol.L}^{-1}$. A l'équivalence, le volume d'acide versé vaut $V_{ae} = 28,3 \pm 0,1$ mL

Calculer la valeur de la base en indiquant son incertitude.

2. Calculer la différentielle de la fonction $\ln c_b$ considérée comme une fonction de c_a , V_{ae} et V_b . On parle alors de différentielle logarithmique de c_b .

En déduire un autre calcul de l'incertitude sur c_b .

Exercice MATH 2 - 2

1. Pour un système thermodynamique décrit par une équation d'état f(P, V, T) = 0, on définit les coefficients thermoélastiques par :

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \quad ; \quad \chi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \quad ; \quad \beta = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_V$$

Écrire les différentielles des fonction f(P, V, T) et V(P, T). En considérant P constant, montrer que

$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\frac{\frac{\partial f}{\partial T}}{\frac{\partial f}{\partial V}}$$

En déduire que quel que soit la fonction f on a :

$$\left(\frac{\partial V}{\partial P}\right)_T \cdot \left(\frac{\partial P}{\partial T}\right)_V \cdot \left(\frac{\partial T}{\partial V}\right)_P = -1$$

Trouver à partir de cette égalité une relation liant les trois coefficients thermoélastiques.

- 2. Calculer α et χ_T pour un gaz parfait.
- 3. Calculer α et χ_T pour un gaz de VAN DER WAALS d'équation d'état : $\left(P + \frac{n^2}{V^2}a\right)(V nb) = nRT$